Acta Crystallographica Section E

Structure Reports
 Online
 ISSN 1600-5368
 Ke-Wei Lei, ${ }^{\text {a }}$ Wei-Sheng Liu ${ }^{\text {a }}$ and Kai-Bei Yu ${ }^{\text {b }}$

${ }^{\text {a }}$ Department of Chemistry and State Key Laboratory of Applied Chemistry, Lanzhou University, Lanzhou 730000, People's Republic of China, and ${ }^{\mathbf{b}}$ Chengdu Center of Analysis and Measurement, Academia Sinica, Chengdu 610041, People's Republic of China

Correspondence e-mail: liuws@|zu.edu.cn

Key indicators

Single-crystal X-ray study
$T=287 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.025$
$w R$ factor $=0.056$
Data-to-parameter ratio $=14.9$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

[N, N-Diisopropyl-2,2'-(2,3-naphthalenedioxy)diacetamide]trinitratoneodymium(III) acetone solvate

In the title compound, $\left[\mathrm{Nd}\left(\mathrm{NO}_{3}\right)_{3}\left(\mathrm{C}_{26} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{O}_{4}\right)\right] \cdot \mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}$, the $\mathrm{Nd}^{\mathrm{III}}$ atom is coordinated by ten O atoms in a a distorted bicapped dodecahedral geometry. The $\mathrm{Nd}-\mathrm{O}$ (carbonyl) bond distances [average 2.3817 (18) Å] are significantly shorter than other $\mathrm{Nd}-\mathrm{O}$ bonds in the $\mathrm{Nd}^{\mathrm{III}}$ complex.

Comment

The luminescence of lanthanide complexes incorporating an open-chain crown ether has attracted our attention. As N, N -diisopropyl-2,2'-(2,3-naphthalenedioxy)diacetamide (L) has the proper conjugate absorption group, it has been used as a chelating ligand to prepare the title $\mathrm{Nd}^{\mathrm{III}}$ complex, (I).

- $\mathrm{CH}_{3} \mathrm{COCH}_{3}$

The molecular structure of (I) is illustrated in Fig. 1. The $\mathrm{Nd}^{\text {III }}$ atom is coordinated by ten O atoms, four from the tetradentate L ligand and six from chelating nitrate anions, in a distorted bicapped dodecahedral geometry. L chelates to the $\mathrm{Nd}^{\mathrm{III}}$ atom by four O atoms, of which atoms $\mathrm{O} 1, \mathrm{O} 3$ and O 4 of L are coplanar with the $\mathrm{Nd}^{\mathrm{III}}$ atom, but atom O 2 deviates from the mean plane formed by $\mathrm{O} 1 / \mathrm{O} 3 / \mathrm{O} 4 / \mathrm{Nd}$ by 1.108 (3) \AA. The bond distances between Nd and carbonyl atoms O 2 and O 4 are significantly shorter than other $\mathrm{Nd}-\mathrm{O}$ bond distances (Table 1).

Experimental

Ligand L was prepared according to the literature method of Zhang \& Liu (2003). An ethyl acetate solution of $\mathrm{Nd}\left(\mathrm{NO}_{3}\right)_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ (0.1 mmol) was added dropwise to an ethyl acetate solution (20 ml) of

Received 13 April 2005 Accepted 13 May 2005 Online 21 May 2005
$L(0.1 \mathrm{mmol})$. The mixture was stirred for 4 h and a pale-purple precipitate appeared. The precipitate was separated and washed three times with ethyl acetate. Single crystals of (I) were obtained by recrystallization from acetone solution. Analysis calculated for $\mathrm{C}_{29} \mathrm{H}_{44} \mathrm{~N}_{5} \mathrm{NdO}_{14}$: C 42.11, H 5.22 , N 8.30%; found: C 41.88 , H 5.30 , N 8.42%.

Crystal data

```
\(\left[\mathrm{Nd}\left(\mathrm{NO}_{3}\right)_{3}\left(\mathrm{C}_{26} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{O}_{4}\right)\right] \cdot \mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}\)
\(M_{r}=830.93\)
Monoclinic, \(P 2_{\mathrm{o}_{1}} / n\)
\(a=13.457\) (3) \(\AA\)
\(b=19.807\) (3) A
\(c=14.080\) (3) \(\AA\)
\(\beta=97.15\) (2) \({ }^{\circ}\)
\(V=3723.7(12) \AA^{3}\)
\(Z=4\)
```

$$
D_{x}=1.482 \mathrm{Mg} \mathrm{~m}^{-3}
$$

Mo $K \alpha$ radiation
Cell parameters from 30
reflections
$\theta=4.7-12.2^{\circ}$
$\mu=1.46 \mathrm{~mm}^{-1}$
$T=287$ (2) K
Block, pale purple
$0.58 \times 0.46 \times 0.42 \mathrm{~mm}$

Data collection

Siemens P4 diffractometer

ω scans
Absorption correction: ψ scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.435, T_{\text {max }}=0.540$
7518 measured reflections
6734 independent reflections
5404 reflections with $I>2 \sigma(I)$

$$
\begin{aligned}
& R_{\text {int }}=0.016 \\
& \theta_{\max }=25.3^{\circ} \\
& h=0 \rightarrow 16 \\
& k=0 \rightarrow 23 \\
& l=-16 \rightarrow 16 \\
& 3 \text { standard reflections } \\
& \quad \text { every } 97 \text { reflections } \\
& \text { intensity decay: } 2.8 \%
\end{aligned}
$$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.025$
$w R\left(F^{2}\right)=0.056$
$S=0.97$
6734 reflections
453 parameters
H -atom parameters constrained

$$
\begin{gathered}
w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0294 P)^{2}\right] \\
\text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }=0.002 \\
\Delta \rho_{\max }=0.35 \mathrm{e}^{-3} \\
\Delta \rho_{\min }=-0.32 \mathrm{e}^{-3}
\end{gathered}
$$

Extinction correction: SHELXL97
Extinction coefficient: 0.00345 (11)

Table 1
Selected bond lengths (\AA).

$\mathrm{Nd}-\mathrm{O} 1$	$2.5890(18)$	$\mathrm{Nd}-\mathrm{O} 6$	$2.514(2)$
$\mathrm{Nd}-\mathrm{O} 2$	$2.3946(18)$	$\mathrm{Nd}-\mathrm{O} 8$	$2.532(2)$
$\mathrm{Nd}-\mathrm{O} 3$	$2.6908(17)$	$\mathrm{Nd}-\mathrm{O} 9$	$2.517(2)$
$\mathrm{Nd}-\mathrm{O} 4$	$2.3687(18)$	$\mathrm{Nd}-\mathrm{O} 11$	$2.537(2)$
$\mathrm{Nd}-\mathrm{O} 5$	$2.555(2)$	$\mathrm{Nd}-\mathrm{O} 12$	$2.5340(19)$

Methyl H atoms were placed in calculated positions, with $\mathrm{C}-\mathrm{H}=$ $0.96 \AA$, and torsion angles refined to fit the electron density. Other H atoms were placed in calculated positions, with $\mathrm{C}-\mathrm{H}=0.93$ (aromatic), 0.97 (methylene) and $0.98 \AA$ (methine), and were included in the final cycles of refinement using a riding model, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}$ of the carrier atom.

Figure 1
The structure of (I), showing 30\% probability displacement ellipsoids. H atoms have been omitted.

Data collection: XSCANS (Siemens, 1994); cell refinement: XSCANS; data reduction: SHELXTL (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

We acknowledge financial support from the NSFC (grant Nos. 20371022, 20431010 and 20021001), the Specialized Research Fund for the Doctoral Programme of Higher Education, and the Key Project of the Ministry of Education of China (grant No. 01170).

References

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sheldrick, G. M. (2002). SADABS. Version 2.03. University of Göttingen, Germany.
Siemens (1994). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Siemens (1996). SHELXTL. Version 5.04. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA
Zhang, Y.-L. \& Liu, W.-S. (2003). Polyhedron, 22, 1695-1699.

